We develop different Systems ranging from active nanoparticles (nanobots), 3D Bioprinted Actuators and flexible biosensors. We are interested in fundamental studies of active matter, the use of nanobots for future nanomedicine and environmental applications and the bioengineering of new devices based on hybrid systems.
NanoBio Team
The use of enzyme catalysis is emerging as an attractive alternative to power micro- and nanomachines due to their unique features including biocompatibility, versatility and fuel bioavailability. Our group has demonstrated the use of different enzymes, including urease and glucose oxidase, to generate active propulsion of nano- and microparticles, paving the way towards new applications of artificial active matter in biomedicine. We have recently demonstrated that using enzyme-powered nanomotors can enhance anti-cancer drug delivery in vitro, improve the targeting of 3D bladder cancer spheroids and sense their surrounding environment. We are also interested in understanding the fundamental aspects underlying the motion of biocatalytic microswimmers for a safe and efficient design of micro- and nanomotors.